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Rapid dissipation of magnetic fields due to the Hall current

S. I. Vainshtein,1 S. M. Chitre,2 and A. V. Olinto1
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2Tata Institute of Fundamental Research, Bombay, 400 005, India

~Received 25 May 1999!

We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium
where ion motions can be neglected. In such a medium, the field is frozen into the electrons, and Hall currents
prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients they are able to
create current sheets which can be sites for efficient dissipation of magnetic fields. We recover the frequency
vMH for Hall oscillations modified by the presence of density gradients. We show that these oscillations can
lead to an exchange of energy between different components of the field. We calculate the time evolution, and
show that magnetic fields can dissipate on a time scale of order 1/vMH . This mechanism can play an important
role in magnetic dissipation in systems with very steep density gradients, where the ions are static such as those
found in the solid crust of neutron stars.

PACS number~s!: 52.30.Bt, 47.65.1a, 97.60.Jd
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I. INTRODUCTION

Rapid dissipation of magnetic fields is currently one
the key problems in astrophysics. On account of the ge
ally large electrical conductivities that are obtained in ast
physical settings, the Ohmic dissipation of fields usua
takes place on very long time scales. However, it is qu
often observed that astrophysical magnetic fields change
pology on a very short time scale, giving rise to a variety
transient phenomena. An explanation of such fast chang
crucial to the understanding of solar activity, in particul
solar flares@1#, and other active phenomena observed in s
@1,2#. It is also known that fast reconnection of magne
fields is basic to the operation of nonlinear dynamos@3#.

If a current sheet is formed in a plasma, the reconnec
takes place slowly due to the time scale for the remova
matter from the site of reconnection, as in the Parker-Sw
mechanism@4#. Indeed, if the dissipation in the curren
sheets were to be fast, with the field moving with Alfve´n
speed toward the current sheet and becoming dissipated
due to reconnection, then the matter that is frozen into
field would also move with the same speed toward the sh
The plasma would, therefore, accumulate at the sheets
halt the reconnection, unless there is some efficient eva
tion process operating at the sheet. The sheets are us
narrow and the outflow is rather inefficient, even if it tak
place at Alfvén speed@5#.

We propose a mechanism of fast dissipation of magn
fields that occurs at modified Hall frequencies. The mec
nism is relevant in all situation when Hall currents predom
nate, and there is a density stratification. In this case,
magnetic field follows the~electric! drift velocity of the elec-
trons. In the presence of density gradients, the profile of
magnetic field changes in such a way that it forms a curr
sheet. This steepening of the front isnot accompanied by the
flow of plasma toward the sheet, the drift velocity bei
parallel to it. Consequently, the current sheet is formed,
the field is efficiently dissipated with no accumulation
material, in contrast to the Parker-Sweet reconnec
mechanism.
PRE 611063-651X/2000/61~4!/4422~9!/$15.00
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The modified Hall frequency that we recover belo
vMH , occurs in a stratified medium when the ions rema
static. Two examples of such situations are penetra
waves in low collision plasmas relevant for plasma switch
@6#, and neutron star crusts. In the case of penetration wa
the ion response time is long compared to the wave t
scale, and the ions are approximately static. In the cas
neutron star crusts, the ions form a very high density latt
of iron rich nuclei, with densities varying from;106g/cm23

to ;1011g/cm23 under 0.8 km@7#. In both cases, the field
dynamic is governed by the electron drift motion.

In the following sections, we discuss how Hall currents
a stratified medium can generate fast dissipation in the n
linear regime. In Sec. II, we describe the linear Hall oscil
tions, and discuss how poloidal and toroidal fields excha
energy during these oscillations. We also recover the mo
fied Hall frequency for a stratified medium. We discuss t
limitations of the oscillatory solutions about a stationary co
figuration in Sec. III. We argue that in general there is
stationary configuration for large scale magnetic fields, a
that current sheets develop. The oscillations can occur o
‘‘locally,’’ i.e., on small scales. In Sec. IV, we show that th
magnetic field evolution is governed by a nonlinear equat
similar to Burgers equation. We solve the evolution for
toroidal field configuration numerically, and show that cu
rent sheets develop and magnetic dissipation is efficient.
dissipation time scale is;1/vMH . We describe numerica
solutions for two configurations: a toroidal magnetic field
one polarity, and a toroidal magnetic field consisting of tw
oppositely directed fields. We show that these fields evo
toward forming current sheets that rapidly dissipate. In S
V, we relate the dynamics of toroidal fields with that
poloidal fields, and summarize the different possibilities
the field evolution. We close by discussing the application
this physical mechanism focusing particularly on the case
neutron star crusts~Sec. VI!.

II. LINEAR OSCILLATIONS

Consider the magnetic field evolution in the case wh
the motion of ions can be neglected. This is the case
4422 © 2000 The American Physical Society
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neutron stars’ solid crusts. We will consider collision
plasma. Then, the field evolution follows from Ohm’s law

¹3B5
4p

c
sS E1

1

c
ve3BD , ~1!

whereve is the electron velocity. As the conductivity is us
ally high, the left-hand side of Eq.~1! can be neglected
resulting in

E1
1

c
ve3B50, ~2!

corresponding to the electric drift of electrons.
Taking¹3 of Eq. ~1!, we recover the induction equation

with the Hall effect,

]B

]t
5¹3@ve3B#2¹3h¹3B

52¹3S c

4pne
@¹3B#3BD2¹3h¹3B, ~3!

whereh5c2/4ps. Equation~3! results in the following en-
ergy balance:

1

2

]

]tE B2dV52E h~¹3B!2dV. ~4!

In order to describe the evolution of the field in a stratifi
medium, we consider an axisymmetric magnetic field, wh
can be expressed as the sum of poloidal and toroidal com
nents:

B5Bp1Bt .

In order to simplify the geometry we assume that the rad
of the star,R, is large compared to the wavelengths involve
such that we can work in Cartesian coordinates on the
face of a sphere. We definex and y axes in the horizonta
plane as the latitudinal and azimuthal~longitudinal! direc-
tions, respectively, whilez is the vertical direction. Then the
poloidal field is described by

Bp5$Bx~x,z!,0,Bz~x,z!%,

while the toroidal field is given by

Bt5$0,By~x,z!,0%.

If the resistivity h can be neglected, which is justified i
highly conducting media such as neutron star crusts, then
magnetic energy is conserved, according to Eq.~4!. There-
fore, all that happens to the magnetic field areoscillations
about a stationary configuration.

Consider, for example, an initial poloidal field,B0
5$B0,0,0%, whereB0 is a constant background field. Assum
ing first that the density is also constant, and consider
small perturbations of the magnetic field of the form

b5b̃e2 ivt1 ikxx1 ikzz ~5!
l

h
o-

s
,
r-

he

g

(ky50 because of axial symmetry!, we find, substituting 3
for h→0,

v5vH5
u~k•ve!uc2k

vp
2

, ~6!

whereve5eB0 /mc is the electron cyclotron frequency, an
vp is the plasma frequency. We have thus recovered the
known Hall oscillations or whistlers. Note that even ifby
50 initially, i.e., the toroidal component is absent, it will b
generated, reaching the level of the~perturbed! poloidal
component; thus the energy will be exchanged between
poloidal and toroidal components.

The situation is different if the large scale backgrou
field is toroidal, i.e.,B05$0,B0,0%. Then a perturbation of
the form of Eq.~5! would not result in oscillation~6!, be-
cause (k•ve)50.

Let us now recall that the density is not a constant, b
rather, it has a steep dependence onz. By including the spa-
tial dependence of the density in Eq.~3!, we recover the Hall
frequency modified by the presence of density gradients

v5vMH5
~k•@ve3¹n# !c2

vp
2n

. ~7!

Note thatve is a pseudovector, and therefore the frequen
vMH is a real scalar, as it should be, just asvH is a real
scalar as well; see Eq.~6!. The phase velocity correspondin
to Eq. ~7! can be written as

vMH52
c2

vp
2 F¹n

n
3veG , ~8!

and vMH5k•vMH . A similar case is known in low colli-
sional plasmas, where the corresponding wave is called m
netic penetration wave@6#.

The wave described by Eqs.~7! and ~8! corresponds to
only toroidal perturbations due to the chosen initial config
rations. In this special case there is no poloidal field initial
and no energy exchange occur between toroidal and polo
components. However, in general the two components
present and this exchange does take place. In order to
this, let us return to the large scale poloidal fieldB0
5$B0,0,0%, taking into account that the density is a functio
of z. We look for solutions of the linearized equations in t
form

b5$]za~z!,by~z!,2 ikxa~z!%e2 ivt1 ikxx, ~9!

cf. Eq. ~5!. Then we obtain the following dispersion relatio

v2a5
~k•ve!

2c4

vp
4 ~kx

22]z]z!a. ~10!

In order to estimate the frequency, consider two zonesz2
<z,z1, with densityn2, andz1<z<0 (z50 is the top of
the crust!, with densityn1, and uz1u5h1, and z12z25h2 ,
h1,2 being the scale hight in these two zones. Assuming t
n2@n1 andh2@h1, we obtain
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v5
p

2

u~k•ve!uc2

vp2

2
ukx11/h1u, ~11!

wherevp2
is the plasma frequency based on the densityn2.

Note that ifkx!1/h1 ~large horizontal length scale!, the fre-
quency is essentially the same asvMH in Eq. ~7!. This is the
main characteristic frequency of magnetic fluctuations in
crust due to the steep density gradient. As seen from Eq.~9!,
this mode does involve both poloidal and toroidal comp
nents.

The most general case involves nonlinear coupling
tween the poloidal and toroidal fields. Qualitatively the sa
situation will take place: if we start with a poloidal field
supported by the currents in the crust, a toroidal field will
generated. The current velocity is toroidal, and, according
Eq. ~3!, the toroidal field is stretched out from the poloida
analogously to the effect of differential rotation. Howeve
unlike the latter, the Hall current conserves the energy,
therefore the new toroidal field will grow at the expense
the poloidal field. In other words, while the strength of t
toroidal field is increasing, that of the poloidal compone
should decrease; see, e.g., Ref.@8#. Of course, the toroida
field cannot grow indefinitely under these circumstances,
eventually the field will either reach some steady state, or
poloidal and toroidal fields will exchange their energies,
cillating with frequencyvMH . Note, however, that including
dissipation may drastically change the situation, and, in so
cases, discussed below in Secs. III, and IV, the field w
rapidly dissipate instead of oscillate.

III. PROBLEM OF STATIONARY STATES

This simple picture of oscillations implicitly assumes th
they proceed about some stationary state, which presum
exists. The large scale background field considered ab
was uniform and trivially stationary. We will show that, i
general, the large scale field is not stationary but evol
with time.

It is clear from Eq.~3! that the stationary state is possib
if, neglecting diffusion,

c

4pne
@¹3B#3B5¹F, ~12!

that is, the electric field is potential. We will show that co
dition ~12! does not trivially occur even for extremely simp
topologies, due to the gradient of the density. Indeed, c
sider an initial configuration consisting only of a toroid
field.

Equation~3! for a pure toroidal field can be written as

] tBy1 ṽx]xBy1 ṽz]zBy5h¹2By , ~13!

where

ṽx5
c]zn

4pen2 By2]xh, ṽz52
c]xn

4pen2 By2]zh. ~14!

If we neglect the resistivity in this expression, we recover
penetration wave velocity~8!, ṽ→vMH ash→0.
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It can be seen from Eq.~14! that thex component of the
velocity is nonvanishing, due to the vertical gradient of t
density. Note that both the density gradient and the grad
of the resistivityh, are negligible in thex direction, and the

ṽz component defined only by the resistivity gradient is a
small. Since any toroidal field should vanish at least at
two poles, there is always a latitudinal dependence of
toroidal field, that is to say thatBy is always a function ofx.
Hence, according to Eq.~13!, the toroidal magnetic field can
never attain a stationary state. In other words, the elec
field cannot be irrotational, as in Eq.~12!, and its nonpoten-
tial part results in the time evolution of the magnetic field

Note that in infinite space Eq.~13! conserves magnetic
flux,

E Bydxdz5const, ~15!

but the magnetic energy is dissipated according to

1

2

]

]tE By
2dxdz52E h~¹By!2dxdz, ~16!

which is a particular case of Eq.~4!.
On the other hand, for a real toroidal field which shou

vanish at the poles, i.e., atx56pR/2, the magnetic fluxis
not conserved. Indeed, according to Eq.~13!,

1

2

]

]tE Bydxdz5E h]xBy~x5pR/2!dz

2E h]xBy~x52pR/2!dz. ~17!

The right hand side gives a considerable contribution wh
current sheets are formed atx56pR/2.

IV. TOROIDAL MAGNETIC FIELD EVOLUTION:
FORMATION OF CURRENT SHEETS

A. Analytical and numerical solutions

In order to study the evolution of the field, according
Eq. ~13!, we reduce this equation to~neglecting the resistiv-
ity gradient, and resistive diffusion in thez direction!

] tb1b]xb5h]x]xb, ~18!

where

b5Byp, p5
c]zn

4pen2 . ~19!

This is, in fact, the Burgers equation, the exact solution
which is well known; see, e.g., Ref.@9#. First, let us illustrate
a solution in the form of a traveling shock wave,

b5b0S 12tanhH ~x2b0t !b0

2h J D , ~20!

whereb0 is a constant; cf., e.g., Ref.@6,10#. The penetration
wave ~20! does not decay because the magnetic field
pumped into the system from2`. Therefore, it is more ap-
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FIG. 1. Evolution of a magnetic field of single polarity in the crustal region of a neutron star, as it approaches a polar region. The
is located at zero latitude, and the timet is expressed in units of the turnover timet0, given in Eq.~27!.
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propriate for our purposes to use the general exact solu
which we recover by using the transformation

b522h]x ln j ~21!

to obtain

j5E
2`

` 1

~4pht !1/2
e2(x2x8)2/(4ht)j~ t50,x8,z!dx8.

~22!

Generally, the toroidal fieldBy is a function of bothx andz,
and, since thez-dependence enters only parametrically in
Eqs. ~18! and ~19!, the solutions~21! and ~22! can be used
for each levelz5const.

To illustrate the time evolution of the magnetic field, w
demonstrate the following two cases. In the simplest ca
we assume that the toroidal magnetic field does not cha
sign. Then the horizontal velocityṽx is expected to drive the
field to one of the poles, either to the south or to the no
depending on the sign of the field. The gradient of the fi
steepens, as in a shock wave, thus forming a current sh
where the magnetic field is finally dissipated. In the seco
case, consider two toroidal fields with opposite polarities
the two hemispheres. The toroidal field vanishes at the eq
tor. We then expect that the two toroidal fields can be driv
by the latitudinal velocityṽx toward the equator, where th
current sheet is formed, and the fields are efficiently
stroyed.

The integral in Eq.~22! was calculated numerically, an
then the distribution of magnetic fieldBy was recovered from
Eqs. ~19! and ~21!. Let us discuss the first case where t
toroidal magnetic field does not change sign. Its evolution
depicted in Fig. 1, where the initial field distribution is ind
n,

e,
ge

,
d
et,
d
n
a-
n

-

is

cated by the dashed line. The field profile starts to steepe
very few turnover time steps, and moves toward the po
region. Note that the magnetic field in Fig. 1 is not pump
into the system; cf. Eq.~20!. Therefore, unlike the traveling
wave ~20!, as the magnetic field spreads its amplitude d
creases, keeping the magnetic flux conserved and, thus
same area under each curve; see Eq.~15!. As a result of
decreasing magnetic field, the process slows down, bec
the penetration velocity~8! is proportional toB, and, there-
fore it decreases as well.

In infinite space, both the shock wave~20! and the solu-
tion depicted in Fig. 1 do not result in a dissipation of ma
netic field, and the magnetic flux is conserved according
Eq. ~15!. The field is only spread out. However, for a fini
case such as that of a star, the boundary conditions at
poles forces the field to go to zero. When the shock wa
reaches the pole, a current sheet is formed and the field s
to dissipate according to Eq.~17!. Eventually, the magnetic
flux goes to zero.

In order to see this dissipation at a zero point, we proc
to the second example. That is, we consider the toroidal fi
changing sign atx50. It is straightforward to construct a
solution, analogous to the traveling wave~20!:

b52b0 tanhH xb0

2h J . ~23!

Similarly to the Parker-Sweet solution@4#, a magnetic field
of opposite polarities is transported fromx→6` with ‘‘ve-
locity’’ 6b0, and is dissipated atx50. The solution is sta-
tionary because the boundary conditions are:By(x→6`)
→6b0 /p; see Eq.~19!.

In Fig. 2 we display the evolution of a toroidal field wit
opposite polarities in each hemispheres, andBy(x50)50.
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FIG. 2. The evolution of magnetic fields of opposite polarities in the two hemispheres. In this case, the two fields approach ea
to form a current sheet at the equator, where the magnetic energy is efficiently dissipated.
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The field also vanishes at the poles,By(x56pR/2)50,
which makes the solution evolve in time~again, in contrast
to the infinite space case!. Here the two fields are com
pressed into each other, and form a sharp gradient of m
netic field at the equator. Note that the total magnetic flux
zero and, of course, trivially conserved. As to the magne
energy, it decreases dramatically because of the very
cient Ohmic dissipation at the equatorial region. In this
gion, a current sheet is formed in practically only one tu
over time, and the field dissipates on the same time scale
analytical estimate of the dissipation time is given in S
IV B; it illustrates why the dissipation observed numerica
is so efficient.

B. Physical interpretation of the mechanism

In order to develop a physical interpretation of the so
tions above, we draw a few analogies. The equation for
magnetic field@Eq. ~3!# resembles the vorticity equation fo
incompressible hydrodynamics with high Reynolds numbe
Therefore, the modified Hall drift should lead to a situati
analogous to a magnetic turbulent state@11#. Another inter-
pretation of our solutions is the nonlinear interaction of d
ferent wave number Hall oscillations resulting in an ene
cascade to small scales@12#. As a result, the field gradient
steepen, and we obtain an enhanced local rate of Ohmic
sipation which provides an effective mechanism for the d
sipation of magnetic energy.

These analogies, although helpful, cannot be taken c
pletely due to the topological constraints on magnetic fie
For instance, since the magnetic structures are frozen into
electron fluid, they are generally more persistent than vo
ces in hydrodynamics. The topology of magnetic field can
be easily changed, a situation similar to what one obtain
magnetohydrodynamics@3,13#. The magnetic structures w
g-
s
ic
fi-
-
-
n
.

-
e
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y
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-

-
s.
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considered are nonstationary due to global effects~like the
boundary conditions at the poles! and not locally unstable
like the case of vorticity and magnetic turbulence. In ad
tion, in the case of magnetic turbulence, the characteri
frequency coincides with the Hall oscillations frequency@Eq.
~6!#, which is smaller thanvMH from Eq. ~7! for situations
with sharp density gradients. Therefore, our mechanism
more efficient.

In magnetohydrodynamics, fast reconnection encoun
difficulties @1# because the rapid transport of magnetic fie
toward the current sheet, where the energy is dissipate
accompanied by a plasma movement in the same direc
The evacuation of matter from the current sheet limits
rate of reconnection: as matter accumulates the pressur
creases, eventually halting the movement of the magn
field toward the current sheet, thus preventing further rec
nection. The speed of the evacuation is limited by the Alfv´n
velocity in a narrow current sheet. In our mechanism, we
not encounter this difficulty, becauseṽx does not transpor
the mass. Indeed, according to Eqs.~18! and~19!, there is no
outflow from the current sheet: the magnetic field is tra
ported only to the sheet by the penetration velocityṽx . This
is evident from the exact solution~23!.

In order to understand why the modified Hall drift or pe
etration velocity does not transport any mass, we first n
that, generally, the penetration velocity~8! is not parallel to
the electric drift velocity~2!. So the question arises of wh
the magnetic field is moving in the direction of the penet
tion velocity in the first place. The answer is illustrated
Fig. 3. For simplicity, we choose to illustrate a field th
depends only on thex coordinate@as in Eq.~23!#. The elec-
tric drift of electrons @Eq. ~2!# can be easily found from
Ampere law,

ve52
c

4pne
¹3B, ~24!
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and, clearly, it proceeds in thevertical direction~depicted by
double arrows in Fig. 3!. It follows from Eq. ~24! that

¹•nve50. ~25!

Due to the density gradient, the plasma becomes compre
as it moves down, and the descending motion decelerate
follows from Eq.~25!. As a result, the magnetic field ampl
tude increases. On the other hand, the ascending motio
accompanied by a decompression of plasma, and co
spondingly, the field amplitude decreases. As a result,
field profile steepens, as if there were a motion of plas
toward the current sheet, that is in thehorizontal direction.
However, as mentioned, the real drift motion proceeds p
allel to the sheet~in the vertical direction!, and therefore
there is no accumulation of matter in the sheet. These
cumstances make the fast dissipation of a magnetic field
sible.

As mentioned above, the penetration wave@Eqs. ~7! and
~8!# is known to propagate as a shock wave in low collisio
plasma@6,10#. Due to the conservation of the magnetic flu
@Eq. ~15!#, either the magnetic field is only transported by t
shock wave@Eq. ~20!# or it just disperses to infinity. Only the
presence of zero points result in the destruction of magn
flux. This happens either at the poles, or between two sh
waves with opposite magnetic fields that collide. The co
sional front width of the shock wave coincides with curre
sheet thickness. Indeed, the balance between the conve
and resistive terms in Eq.~13! appears in a current sheet
thickness,

d5
h

ṽx

, ~26!

FIG. 3. Origin of the penetration velocity. The magnetic fie
evolution is depicted on the top of the figure. The direction of
field is out of the page. The drift velocities corresponding tot50
are depicted with double arrows. It can be seen that the field pr
steepens during the evolution due to the vertical change in the
velocity. The drift proceeds in a vertical direction, and, therefo
there is no accumulation of matter at the current sheet.
ed
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coinciding with characteristic length of both Eqs.~20! and
~23!. Recall that the penetration velocityṽx is defined in Eq.
~14!, and, in a more specific way, in Eq.~8!.

It is known that the time scale of magnetic dissipation,t0,
is entirely defined by the velocity with which the magne
field is moving to the current sheet@5#. As seen from the
exact stationary solution~23!, this speed is in effect the pen
etration velocityṽx . Therefore,

t05L/ ṽx , ~27!

L being the macroscopic latitudinal scale. It is useful to co
firm this dissipation rate estimate analyzing the energy d
sipation directly from Eq.~16!. That is, we estimate¹By in
Eq. ~16! asBy /d, and the area occupied by the current sh
is Sd5dL. Then, from Eq.~16! we obtain,

By
2

t0
L2'h

By
2

d2
Sd , ~28!

from which t0 is recovered as in Eq.~27!. Note that the
dissipation time@Eq. ~27!# is independent of the resistivityh,
and therefore the process considered here is fast. This
plains why the dissipation is so efficient in the numeric
results shown in Fig. 2.

We finally note that the efficient dissipation depicted
Fig. 2 proceeds when the penetration velocities of the t
toroidal fields point to each other, and therefore they colli
If we change sign of magnetic fields, then, according to E
~8!, the penetration velocity changes its direction, and, a
result, the two toroidal fields would not collide, but inste
drift to the polar regions, where they will eventually deca
As mentioned above in Sec. IV A, the latter process is mu
less efficient because the magnetic field strength decreas
the fields move to the poles, as seen from Fig. 1, and th
fore the penetration velocity decreases.

V. EVOLUTION OF THE POLOIDAL FIELD

In Figs. 1 and 2, we have shown the solution of our n
merical calculations for the evolution of toroidal fields wi
different initial profiles. Since the toroidal and poloidal field
are coupled through nonlinear oscillations, we expect the
sipation of toroidal fields to cause the eventual decay of
poloidal field. The exact evolution of the poloidal field is
harder problem to solve at this stage, and we leave it
future studies. Below, we only discuss the expected qua
tive behavior of the poloidal field.

As we saw in Sec. II, the linear oscillations exchan
energy between the poloidal and toroidal components.
other words, an initial poloidal field would generate a toro
dal one. The generated toroidal field could have the non
ear evolution depicted on either Fig. 1 or 2. In the case t
the generated toroidal field is in the configuration of Fig. 1
would slowly drift to the poles. We expect that, in this cas
one would observe oscillations, because the dissipatio
inefficient.

Consider now the case when the toroidal fields are ge
ated with the configuration as in Fig. 2. In order to follo
this generation in the nonlinear case, we write, according
Eq. ~3!,

le
ift
,
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]

]t
By52

]

]z S c

4pne
j yBzD2

]

]x S c

4pne
j yBxD , ~29!

where

j y5
]

]z
Bx2

]

]x
Bz ~30!

is the azimuthal current. Note that, for neutron star crusts,
density gradient in the radial direction is extremely steep
the crustal regions, spanning some nine orders of magni
over a distance of a few hundred meters below the surf
The variations of other quantities in Eq.~29! can therefore be
neglected, to obtain

]

]t
By52 j yBz

]

]z

c

4pne
5

c]zn

4pen2
j yBz . ~31!

It is evident from Eq.~31! that the toroidal field can alway
be generated due to the sharp density gradient, unless
poloidal field in the crustal region is current free. If, indee
the field is anchored in the core~meaning that the current
supporting the field are confined there!, then there is no Hall
current present. At present, the locus where the field is
chored in neutron stars is a matter of debate with no c
resolution~see, e.g., Refs.@7,14#!.

If we assume that part of the current supporting the fi
is present in the crustal layers, then the toroidal field will
generated from the poloidal field by the process outlin
above in Eq.~31!. On the other hand, the total magne
energy is essentially conserved~apart from weak Joule dis
sipation!, which means that the newly generated toroid
field would result in a back reaction on the poloidal field
such a way that the energy of the latter is decreased. In
absence of Ohmic dissipation, the toroidal field would gr
to a certain level, and then start to decrease, thus prese
an oscillatory behavior, as described earlier at the end of
II. If we incorporate Ohmic diffusion into the nonlinear cas
both the toroidal and poloidal fields should eventually dec

Again, in the case of Fig. 1, the toroidal fields wou
slowly drift to the poles and we expect to observe osci
tions, because the dissipation is inefficient. In the case of
2, the toroidal field is efficiently dissipated and consequen
according to Eq.~4!, both the poloidal and toroidal field
decay. Indeed, the Ohmic dissipation is now increased du
the presence of current sheets, so that Eq.~4! can be written
in the form

1

2

]

]tE B2dV52
1

t0
E By

2dV. ~32!

In order to follow the evolution of the poloidal field, w
introduce efficient dissipation discussed above into Eq.~31!,
to obtain

]

]t
By5vMHBp2

By

t0
, ~33!
e
n
de
e.

the
,

n-
ar

d
e
d

l

he

ing
c.

,
.

-
g.
,

to

and, because the Hall current conserves the total ene
*(Bp

21By
2)dV, the back reaction of the toroidal magnet

field on the poloidal component can be expressed an
gously:

]

]t
Bp52vMHBy . ~34!

Seeking solutions;egt, we find a dispersion relation:

g52
1

2t0
6AS 1

2t0
D 2

2vMH
2 . ~35!

It can be seen from Eq.~35! that the decay time for the
poloidal component is also of the order oft0. To summarize,
we can delineate three regimes for magnetic fields in
crusts of neutron stars:

~1! The currents supporting the fields in the crust are
chored in the core, i.e., no currents in the crust. Then ther
no Hall current~by definition!, and no evolution of the fields
related to the processes we described here.

~2! The currents or part of the current are situated in
crust. Then the poloidal field inevitably generates toroid
fields, which, depending on the sign of the initial poloid
field, may result in either penetration velocity pushing the
toroidal fields apart or pushing them together. In the fi
case, the dissipation is less efficient, being limited to sl
decay at the poles~Fig. 1!. Although slower than the equa
torial case, the decay at the poles is still faster than the g
eral Ohmic decay.

~3! In the second case, when the toroidal fields are pus
together as in Fig. 2, we expect both toroidal and poloi
fields to decay according to Eq.~35!.

Note that in any of the above cases there would be os
lations on scales small compared with the radius of the
~i.e., in the geometric optics limit!, with frequencyvMH .
These oscillations in general will decay with Ohmic dec
time.

VI. DISCUSSION

Magnetic fields are an important feature of neutron st
since, together with the rapid rotation of the star, they de
mine the characteristics of the pulsar emission. The sourc
a wide range of magnetic field strengths (;108–1015 G)
associated with neutron stars is yet to be well understo
The seven orders of magnitude span may be attributed to
different environments in which neutron stars are prese
from isolated objects to accreting members of a binary s
tem. This range could also be the result of different con
tions at the time of birth of neutron stars, such as the gra
tational collapse of the progenitor massive star or
accretion-induced collapse of a white dwarf@14#. In any
case, the very high electrical conductivity renders the Ohm
decay inefficient, with a typical accreting of the order
billions of years. If neutron star fields decay over their o
servable lifetime, an alternative decay mechanism is ne
sary to explain this behavior.

One of the uncertainties concerning the evolution of n
tron star magnetic fields is their location in the stellar in
rior. Should the field be a fossil remnant left over from t
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progenitor star, it could permeate the whole body of the n
tron star. On the other hand, if the magnetic field is genera
after a neutron star is born via a battery effect or a dyna
process@15#, it is likely to be confined to its crustal layers
As we discussed in Sec. V, the exact location of the curre
will determine if the mechanism proposed here is opera
in neutron stars or not.

For instance, the interaction between differential rotat
and magnetic fields during the first few seconds of a nas
neutron star’s life would generate strong toroidal magne
fields in the subsurface layers of the star. With the ra
cooling of the star, the crust solidifies, with the ions formi
a lattice in the presence of relativistic electrons. Some fr
tion of the toroidal field will have different signs in th
Northern and Southern hemispheres, like the one illustra
in Fig. 2. Under these conditions the magnetic field is froz
into the electron gas, and Hall currents in the crustal lay
can arise and our mechanism will be effective. In contra
the Ohmic dissipation in the crustal layers takes place o
very long time scale.

If part of the currents supporting the fields is situated
the crust, we can use our mechanism to estimate the
scale for rapid dissipation to occur. Taking typical numb
for the crustal layers of a neutron star, at a density sc
heighth of 104 cm, n51034 cm23 and a magnetic field o
1012 G, then ṽx'1028 cm/sec. The corresponding tim
scalet05L/ ṽx , whereL is horizontal scale of the magnet
field, is t051014 sec'3 million years, assumingL
5106 cm. On the other hand, for a density scale height
33103 cm, thenn51032 cm23, we have, forB51012 G,

ṽx'1025 cm/sec; therefore,t051011 sec'3000 years. Fi-
nally, if we take a scale height of 103 cm, then the density is
n51030, and ṽx'1023 cm/sec andt0530 years. In a rea
neutron star, all of these time scales are present if curr
occur throughout the crust.

Indeed, due to the sharp gradient of electrical conductiv
in the crustal region, we can consider the depth 103 cm as a
boundary between two layers, with differents1,2, index 1
corresponding to the upper layer, and index 2 to the low
layer, with s2@s1. Then, the tangential component of th
electric field is continuous, resulting in Ref.@16#

~¹3B!1

s1
5

~¹3B!2

s2
. ~36!
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It follows from Eq. ~36! that the currents are much strong
in the inner layer in a quasisteady state. Another way to
that the currents are pumped down the crustal area is dire

from Eq. ~14!: ṽx52]xh;]xs/s2. As the conductivity in-
creases inwards, this part of the velocity results in a push
down of the magnetic flux. Therefore, if the initial curren
are evenly distributed in the crustal area, the upper curre
dissipate in short time scale~30 years!, currents in deeper
layers dissipate over longer time scales (;3000 years),
while the whole crustal field lasts for a few million years.

As we mentioned above, it is not known which part of t
currents supporting the poloidal field is situated in the cr
@14,17#. In any event, that part of the crustal currents c
dissipate via our mechanism on a very short time scale, w
the field anchored in the core may remain for a time sc
comparable to the age of the universe. It is possible t
pulsars with relatively low observed magnetic fields indica
a core component of;108 G, while pulsars with fields of
order 1012 G are younger and have not had time to lose th
crustal field component. As isolated pulsars lose their cru
magnetic field due to rapid decay, they also slow down,
the process crossing the death line to become unobserv
We suggest that as neutron stars in binary systems lose
crustal magnetic fields, they permit an increased rate of
cretion that spins them up to give rise to the milliseco
pulsar population.
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